By the end of this lesson, you will be able to:
Direct integration involves embedding Manus AI capabilities directly within an application:
// Example of API-based integration in JavaScript
async function generateContentWithManus(prompt) {
try {
const response = await fetch('https://api.manus.ai/generate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + API_KEY
},
body: JSON.stringify({
prompt: prompt,
max_tokens: 1000,
temperature: 0.7
})
});
const data = await response.json();
return data.content;
} catch (error) {
console.error('Error calling Manus AI:', error);
throw error;
}
}
Middleware integration uses an intermediate layer to connect Manus AI with other systems:
Figure 1: OpenManus Integration Ecosystem
# Example of message queue integration with RabbitMQ
import pika
import json
# Connect to RabbitMQ
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()
# Declare queues
channel.queue_declare(queue='manus_requests')
channel.queue_declare(queue='manus_responses')
# Function to send a request to Manus AI
def send_manus_request(request_data):
channel.basic_publish(
exchange='',
routing_key='manus_requests',
body=json.dumps(request_data)
)
print(f"Sent request: {request_data}")
# Function to process responses from Manus AI
def process_manus_response(ch, method, properties, body):
response_data = json.loads(body)
print(f"Received response: {response_data}")
# Process the response...
# Set up consumer for responses
channel.basic_consume(
queue='manus_responses',
on_message_callback=process_manus_response,
auto_ack=True
)
# Example usage
send_manus_request({
'task': 'content_generation',
'prompt': 'Write a product description for a new smartphone',
'parameters': {
'tone': 'professional',
'length': 'medium'
}
})
Service-oriented integration treats Manus AI as a standalone service within a larger architecture:
# Example of Manus AI as a microservice with Flask
from flask import Flask, request, jsonify
import manus_client
app = Flask(__name__)
@app.route('/api/analyze', methods=['POST'])
def analyze_data():
data = request.json
# Validate input
if 'text' not in data:
return jsonify({'error': 'Missing required field: text'}), 400
# Process with Manus AI
try:
result = manus_client.analyze_text(
text=data['text'],
analysis_type=data.get('type', 'sentiment'),
options=data.get('options', {})
)
return jsonify(result)
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/api/generate', methods=['POST'])
def generate_content():
data = request.json
# Validate input
if 'prompt' not in data:
return jsonify({'error': 'Missing required field: prompt'}), 400
# Generate with Manus AI
try:
result = manus_client.generate_content(
prompt=data['prompt'],
parameters=data.get('parameters', {})
)
return jsonify(result)
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
API-based interfaces provide programmatic access to Manus AI capabilities:
// Example REST API request to Manus AI
curl -X POST https://api.manus.ai/v1/analyze \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_API_KEY" \
-d '{
"text": "The new product launch exceeded our expectations with record-breaking sales in the first week.",
"analysis_type": "sentiment",
"include_entities": true,
"language": "en"
}'
// Example GraphQL query to Manus AI
query {
analyzeText(
text: "The new product launch exceeded our expectations with record-breaking sales in the first week.",
options: {
analysisType: SENTIMENT,
includeEntities: true,
language: "en"
}
) {
sentiment {
score
magnitude
label
}
entities {
name
type
salience
sentiment {
score
magnitude
}
}
language
processedAt
}
}
Event-driven interfaces enable asynchronous communication with Manus AI:
// Example webhook configuration for Manus AI
{
"webhook_url": "https://your-app.com/api/manus-callback",
"events": ["content_generated", "analysis_completed", "error_occurred"],
"secret_token": "your_webhook_secret",
"retry_policy": {
"max_retries": 3,
"retry_interval": 60
}
}
# Example using Google Cloud Pub/Sub with Manus AI
from google.cloud import pubsub_v1
import json
# Initialize clients
publisher = pubsub_v1.PublisherClient()
subscriber = pubsub_v1.SubscriberClient()
# Topic and subscription paths
topic_path = publisher.topic_path('your-project-id', 'manus-requests')
subscription_path = subscriber.subscription_path('your-project-id', 'manus-responses')
# Publish a message to Manus AI
def send_request_to_manus(request_data):
data = json.dumps(request_data).encode('utf-8')
future = publisher.publish(topic_path, data)
print(f"Published message ID: {future.result()}")
# Process responses from Manus AI
def process_manus_response(message):
print(f"Received message: {message.data}")
response_data = json.loads(message.data)
# Process the response...
message.ack()
# Set up subscription
streaming_pull_future = subscriber.subscribe(
subscription_path, callback=process_manus_response
)
# Example usage
send_request_to_manus({
'task': 'text_analysis',
'text': 'The customer feedback indicates high satisfaction with our new service.',
'analysis_type': 'sentiment'
})
UI-based interfaces provide visual ways to interact with Manus AI:
<!-- Example of embedding a Manus AI component in HTML -->
<div id="manus-assistant-container"></div>
<script src="https://cdn.manus.ai/components/v1/assistant.js"></script>
<script>
ManusAI.initialize({
apiKey: 'YOUR_API_KEY',
theme: 'light',
defaultLanguage: 'en'
});
ManusAI.createAssistant({
containerId: 'manus-assistant-container',
capabilities: ['text_generation', 'document_analysis', 'image_recognition'],
initialPrompt: 'How can I help you today?',
height: '500px',
width: '100%'
});
</script>
Integrating Manus AI with content management systems (CMS):
// Example WordPress plugin for Manus AI integration
add_action('admin_post_generate_content', 'manus_generate_content');
function manus_generate_content() {
// Verify nonce and permissions
check_admin_referer('manus_content_generation');
if (!current_user_can('edit_posts')) {
wp_die('Unauthorized access');
}
// Get parameters from request
$topic = sanitize_text_field($_POST['topic']);
$length = sanitize_text_field($_POST['length']);
$tone = sanitize_text_field($_POST['tone']);
// Call Manus AI API
$response = wp_remote_post('https://api.manus.ai/generate', [
'headers' => [
'Content-Type' => 'application/json',
'Authorization' => 'Bearer ' . get_option('manus_api_key')
],
'body' => json_encode([
'prompt' => "Write a {$length} article about {$topic} in a {$tone} tone.",
'parameters' => [
'max_tokens' => ($length === 'short') ? 500 : (($length === 'medium') ? 1000 : 2000),
'temperature' => ($tone === 'creative') ? 0.8 : 0.4
]
])
]);
// Process response
if (is_wp_error($response)) {
wp_redirect(admin_url('admin.php?page=manus-ai&error=api_error'));
exit;
}
$body = json_decode(wp_remote_retrieve_body($response), true);
// Create new draft post
$post_id = wp_insert_post([
'post_title' => $topic,
'post_content' => $body['content'],
'post_status' => 'draft',
'post_author' => get_current_user_id()
]);
wp_redirect(admin_url('post.php?post=' . $post_id . '&action=edit'));
exit;
}
Integrating Manus AI with business intelligence (BI) systems:
Figure 2: Contextual Understanding in BI Integration
Integrating Manus AI with development environments:
// Example VS Code extension for Manus AI integration
const vscode = require('vscode');
const axios = require('axios');
async function generateCode(prompt) {
const config = vscode.workspace.getConfiguration('manusAI');
const apiKey = config.get('apiKey');
try {
const response = await axios.post('https://api.manus.ai/code/generate', {
prompt: prompt,
language: vscode.window.activeTextEditor.document.languageId,
context: vscode.window.activeTextEditor.document.getText()
}, {
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${apiKey}`
}
});
return response.data.code;
} catch (error) {
vscode.window.showErrorMessage(`Manus AI Error: ${error.message}`);
return null;
}
}
function activate(context) {
let disposable = vscode.commands.registerCommand('manusAI.generateCode', async function () {
const editor = vscode.window.activeTextEditor;
if (!editor) {
vscode.window.showInformationMessage('No editor is active');
return;
}
const selection = editor.selection;
const prompt = editor.document.getText(selection);
if (!prompt) {
vscode.window.showInformationMessage('Please select text to use as a prompt');
return;
}
vscode.window.withProgress({
location: vscode.ProgressLocation.Notification,
title: "Generating code with Manus AI...",
cancellable: false
}, async (progress) => {
const generatedCode = await generateCode(prompt);
if (generatedCode) {
editor.edit(editBuilder => {
editBuilder.replace(selection, generatedCode);
});
}
});
});
context.subscriptions.push(disposable);
}
Ensuring secure integration with Manus AI:
Building robust integrations that handle failures gracefully:
// Example of resilient integration with retry logic
const axios = require('axios');
const { CircuitBreaker } = require('opossum');
// Configure circuit breaker
const breaker = new CircuitBreaker(callManusAPI, {
timeout: 10000, // If function takes longer than 10 seconds, trigger failure
resetTimeout: 30000, // After 30 seconds, try again
errorThresholdPercentage: 50, // If 50% of requests fail, open circuit
rollingCountTimeout: 60000 // Consider last 60 seconds of requests
});
// Set up listeners
breaker.on('open', () => console.log('Circuit breaker opened - Manus API may be down'));
breaker.on('close', () => console.log('Circuit breaker closed - Manus API is operational again'));
breaker.on('halfOpen', () => console.log('Circuit breaker half-open - testing if Manus API is back'));
// Function to call Manus API with retries
async function callManusAPI(endpoint, data, maxRetries = 3) {
let retries = 0;
while (true) {
try {
const response = await axios.post(`https://api.manus.ai/${endpoint}`, data, {
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${process.env.MANUS_API_KEY}`
},
timeout: 5000 // 5 second timeout
});
return response.data;
} catch (error) {
retries++;
// If we've reached max retries or it's a 4xx error (client error), don't retry
if (retries > maxRetries || (error.response && error.response.status >= 400 && error.response.status < 500)) {
throw error;
}
// Exponential backoff
const delay = Math.pow(2, retries) * 1000;
console.log(`Retry ${retries}/${maxRetries} after ${delay}ms`);
await new Promise(resolve => setTimeout(resolve, delay));
}
}
}
// Example usage with circuit breaker
async function generateContent(prompt) {
try {
// Use the circuit breaker
const result = await breaker.fire('generate', {
prompt: prompt,
max_tokens: 1000
});
return result.content;
} catch (error) {
console.error('Failed to generate content:', error);
// Fallback mechanism
return "We're unable to generate content at the moment. Please try again later.";
}
}
Ensuring efficient integration with Manus AI:
Design an integration between Manus AI and a system of your choice:
Which integration pattern would be most appropriate for a high-volume, asynchronous processing scenario where Manus AI needs to process requests without blocking the main application?
Message queue-based integration is most appropriate for high-volume, asynchronous processing scenarios. It allows the main application to continue operating without waiting for Manus AI to complete processing, provides natural load balancing, and can handle spikes in request volume by queuing messages when the system is under heavy load.
Which of the following is NOT a common challenge when integrating Manus AI with existing systems?
Hardware compatibility is not a common challenge when integrating Manus AI with existing systems, as Manus AI is primarily accessed through cloud-based APIs that abstract away hardware considerations. The common challenges include authentication and security, error handling and resilience, and performance optimization.
When implementing a circuit breaker pattern in a Manus AI integration, what is its primary purpose?
The primary purpose of implementing a circuit breaker pattern in a Manus AI integration is to prevent cascading failures when the service is unavailable. It works by monitoring for failures and temporarily "opening the circuit" (stopping requests) when a threshold is reached, which prevents the system from repeatedly trying to execute operations that are likely to fail.
You've completed the quiz on Integration Patterns with Manus AI.
You've earned your progress badge for this lesson!